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This article is aimed at relating a certain substantial body of established material 
concerning wave loading on offshore structures to fundamental principles of mech- 
anics of solids and of fluids and to important results by G. I. Taylor (1928a, 3).  The 
object is to make some key parts within a rather specialised field accessible to the 
general fluid-mechanics reader. 

The article is concerned primarily to  develop the ideas which validate a separation 
of hydrodynamic loadings into vortex-flow forces and potential-flow forces ; and to 
clarify, as Taylor (19283) first did, the major role played by components of the 
potential-flow forces which are of the second order in the amplitude of ambient 
velocity fluctuations. Recent methods for calculating these forces have proved 
increasingly important for modes of motion of structures (such as tension-leg 
platforms) of very low natural frequency. 

1. Introduction 
G. I .  Taylor was prone to lay stress on those basic principles which are common 

to solid mechanics and fluid mechanics. His work exemplified also how, by a proper 
concentration on fundamentals, the level of understanding needed to tackle 
important engineering problems could be greatly heightened. In  that spirit I want 
to describe some current techniques for estimating wave loading on offshore 
structures from the standpoint of the fundamental mechanics of solids and fluids. 

Following up an earlier, much more detailed survey (Lighthill 1979) I propose to 
outline the basic physical ideas underlying the ‘Morison equation’ approach to wave 
loading estimation. Then I want to argue that, as we necessarily move to more refined 
methods of estimation, we can appropriately continue to separate hydrodynamic 
loadings (as Morison’s equation does) into vortex-flow forces and potential-flow 
forces. However, second-order terms in the interaction between the potential-flow 
component of fluid motion and the structure need to be taken into account (in a 
manner which Taylor (19283) first pioneered), and these are particularly important 
for the compliant structures that are increasingly being employed as oil extraction 
programmes move into deeper and deeper water. 

2. Basic principles concerning vorticity 
The analysis of fluid loadings into vortex-flow forces and irrotational-flow forces 

is founded initially, of course, upon that analysis of the most general deformation 
of a small spherical element which is fundamental both to solid mechanics and fluid 



668 M .  J. Lighthill 

mechanics. Displacement of such a small spherical element, relative to its centre, is 
divided into 

( a )  pure straining motion, devoid of angular momentum; and 
( b )  rigid rotation with an angular velocity $D, where w is the vorticity. 
For a homogeneous fluid with viscous stresses neglected, a small spherical element 

is acted upon only by pressure forces directed through its mass centre so that the 
rate of change of the angular momentum in motion ( b )  is zero. This fact, combined 
with consideration of how motion (a) is altering the principal moments of inertia of 
the spherical element, was shown by Lighthill (1963) to yield a simple derivation of 
the familiar rules that, for such a fluid, vortex lines are convected by the fluid motion 
(Helmholtz’s theorem) with vorticity being altered in magnitude and direction to the 
extent that such a convected vortex line is stretched and rotated. To those convection 
effects, viscous stresses add a diffusion of the vorticity with a diffusivity v taking 
values between 1 and 2 mm2 s-l for the ocean. This implies that diffusion distances 
during a typical ocean-wave period are of the order of a centimetre or less. 

Vorticity in a homogeneous fluid is created only a t  solid boundaries. For Reynolds 
numbers of engineering interest the rate of vorticity production at a stationary 
boundary is dominated (Lighthill 1963, p. 54) by a term whose magnitude is the 
tangential component of the pressure-gradient force per unit mass. I ts  direction, 
however, is at right-angles to that component so that, as might be expected from 
(a )  and ( b )  above, the angular momentum of a spherical element of fluid tangential 
to the boundary (where it satisfies the no-slip condition) is increasing a t  the same 
rate as would the angular momentum of a non-slipping rigid sphere subjected to the 
same force per unit mass acting through its centre. 

Lighthill (1963) showed how all of the above rules, for the rate of generation of 
vorticity at a solid boundary and for its subsequent convection and diffusion, can 
be used to achieve a sound understanding of the general properties of both 
unseparated and separated boundary layers. These ideas were later expounded by 
him in the context of hydrodynamic loadings on offshore structures (Lighthill 1979) 
and have recently been given a central place in an introductory textbook on 
theoretical fluid mechanics (Lighthill 1986). 

3. Basic principles concerning irrotational flow 
Alongside the crucially important properties of vorticity it is necessary to utilize 

also the properties of irrotational flows. In  an irrotational flow, of course, the 
instantaneous motion of every spherical element of fluid takes the above form (a), 
devoid of angular momentum. 

Motion started impulsively from rest is initially irrotational because any vorticity, 
necessarily created a t  the solid boundary, has not as yet had time to be moved away 
from it by diffusive and convective action (including any boundary-layer separation). 
That initial irrotational flow necessarily possesses a single-valued velocity potential 
q5 (such that -&, where p is the density, specifies the impulsive pressure acting in 
the fluid during the impulsive start) ; note that, in a multiply connected region of fluid, 
this property distinguishes i t  from other irrotational flows, which lack a single-valued 
velocity potential because the circulation around certain circuits is non-zero. 

For motions of externally unbounded fluid around a solid structure, there is just 
one such potential flow satisfying appropriate boundary conditions ; these conditions 
specify the fluid motion far from the structure while, a t  its surface, they equate the 
normal components of velocity of the structure and the fluid. This well known 
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uniqueness theorem for potential flows is reminiscent of results in the mechanics of 
solids, where a deformation field may be determined uniquely from appropriate 
boundary conditions specifying forces or displacements. Also, just as that deforma- 
tion field may be characterized as the unique field compatible with the boundary 
conditions which possesses minimum strain energy, so also the potential flow around 
a structure may be characterized as the unique motion compatible with the boundary 
conditions for which the disturbances to  the far-field motion possess minimum kinetic 
energy. 

Kelvin proved this Minimum Energy Theorem by making an analysis of a complete 
flow field in a form somewhat analogous to that given for a spherical element in $2. 
He analysed the motion of externally unbounded fluid as a linear combination of 

(a )  the potential flow that satisfies the boundary conditions; and 
(b)  a residual vortex motion satisfying zero boundary conditions. 
Here, ‘zero boundary conditions’ imply zero fluid motion far from the structure 

as well as zero normal velocity at its surface. The analogy with the analysis in $ 2  
is only partial, of course; because a spherical element, which in the potential flow 
does only undergo pure straining, is in general subject to both rotation and straining 
in the vortex motion, 

Kelvin showed that the kinetic energy of the disturbances to the far-field motion 
is equal to the sum of its values for the potential flow (a)  and the vortex motion ( b )  ; 
in fact, the ‘cross terms’ which might naturally be expected are proved to make a 
zero contribution by applying the Divergence Theorem to the product of the 
disturbance potential in (a)  with the velocity field in (b ) .  It follows that the kinetic 
energy is least when the motion (b)  vanishes. 

However, the Kelvin analysis into (a )  and ( b )  above has a wide range of practical 
applications in addition to its theoretical use for proving the Minimum Energy 
Theorem. Necessarily, offshore structures shed vorticity in most substantial amounts 
from separated boundary layers; indeed, design options such as might be aimed at 
minimizing shed vorticity (including, in other engineering contexts, the use of 
‘streamlined ’ cross-sections) are unavailable for structures that must withstand fluid 
flow from any direction. Therefore, analysis of the flow around such structures into 
a potential flow and a residual motion associated with the shed vorticity may be most 
fruitful. 

4. Energy approaches to Morison’s equation 
A preliminary idea of the spatial and temporal distribution of forces on elements 

of offshore structures may be derived from arguments making direct use of Kelvin’s 
result that the disturbance energies for components (a )  and ( b )  of an externally 
unbounded flow are additive. Here, following in summary the more detailed survey 
by Lighthill (1979), we may preface accounts of more versatile and quantitatively 
valuable methods by looking briefly a t  such energy approaches. 

Consider first the translational motion ofa  body with variable velocity U(t ) ,  in the 
negative x-direction, through externally unbounded fluid which is a t  rest far from 
the body. Then the irrotational part (a )  of the fluid motion depends only upon those 
boundary conditions which it satisfies instantaneously. This is the part (unlike (b) ,  
the vortex motion) which is devoid of any ‘memory’ for earlier values taken by U ( t ) ;  
rather, it  is proportional simply to the current value of U ,  and its kinetic energy is 
proportional to u2. 

The coefficient of proportionality is usually written +Ma so that the kinetic energy 
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+Ma u2 of the potential flow due to the body’s motion at velocity U can be thought 
of as if it were the kinetic energy of an added mass Ma of fluid which the body’s motion 
effectively drags along with it. Then, if U is increasing as a function of the time t ,  
the rate of increase of this kinetic energy in part (a) of the fluid motion can be written 
Ma UU. To feed this increase the body must act upon the fluid with the classical thrust 
Ma U overcoming the equal and opposite potential-flow drag, 

of the fluid on the body. 
Simultaneously, the kinetic energy of part ( b ) ,  the vortex motion, is increasing as 

more and more vorticity is shed into the wake, where the vortex lines are sub- 
sequently convected and diffused. The rate of working by the thrust with which the 
body acts upon the fluid is necessarily equal to the rate of increase of the total energy 
of the fluid; including (it must be emphasized) both the kinetic energy of part (b )  
and any thermal energy into which viscous dissipation may progressively convert 
that kinetic energy. 

An estimate of the rate of increase of energy in part ( b )  may be derived from the 
rate, proportional to pAU (where A is the body’s frontal area), at  which the mass 
of wake fluid is growing. Velocities in the vortex motion are proportional to U,  giving 
a rate of increase of energy +pAU9CD, where C, is a coefficient. The corresponding 
thrust required to yield this rate of working, and to overcome the equal and opposite 
vortex-flow drag of the fluid on the body, is 

Ma 0, ( 1 )  

+PA ~ C D .  (2) 

Directly from the above results (1)  and (2), for a body moving with variable velocity 
U ( t )  in the negative x-direction through externally unbounded fluid a t  rest, we may 
obtain results for the important case of a body at rest in a flow of variable velocity 
U(t )  in the positive x-direction by the following simple device. We impose an 
additional velocity U,  in the positive x-direction, on the whole system, requiring an 
additional uniform pressure gradient - p  U in the fluid to generate the corresponding 
acceleration U .  These additional pressures, with gradient - p  0, produce an additional 
resultant force 

on a body of volume V .  

added-mass term (1)  to give altogether a potential-flow component of drag 

(3) 

This force (3), sometimes known as the Froude-Krylov force, combines with the 

+ p U V  

cMpUv, (4) 

where the Morison coefficient C, is defined as 

CM = 1 + ( a a / p T . ‘ ) .  ( 5 )  

For example, C, takes the value 1.5 for a sphere, or 2.0 for a circular cylinder. 

potential-flow component (4) and its vortex-flow component (2) in the form 
Morison’s equation expresses the total hydrodynamic drag D as a sum of its 

D = C , ~ U V + + ~ A F C , .  (6) 

The rest of this paper is concerned with giving critical reviews both of the concept 
of analysing the hydrodynamic loading into two components in such a way and of 
matters concerning the magnitude and direction of action of both components; firstly 
in the idealized ‘externally unbounded fluid’ and then for real structures in real 
waves. 
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5. Basic principles concerning the momentum of a fluid flow 
In  the case of bodies in externally unbounded fluid we can obtain from momentum 

considerations expressions for hydrodynamic loading forces which, while maintaining 
a clear separation between potential-flow and vortex-flow forces, are a t  the same time 
more informative in two ways: they give vector forms of these forces that are not 
necessarily aligned with the velocity of the fluid, and they are quantitatively more 
precise. Nevertheless, there is a conceptual difficulty in applying momentum 
arguments to fluid flows. 

This difficulty results from the classical ambiguity in how to define either the 
momentum of the disturbances to a flow of velocity (U,, U,, U,) produced by a 
stationary body; or (what is the same thing) the momentum of the flow produced 
when the same body moves with velocity ( - U,, - U,, - U,) in otherwise undisturbed 
fluid. This difficulty, resulting from the lack of absolute convergence in the integral 
defining momentum, can be surmounted in either of two equally acceptable ways, 
both well established in the literature of hydrodynamics. 

One of these, expounded in detail by Lighthill (1979), defines the x,-component 
of momentum as equal to its value for the fluid bounded internally by the body and 
externally by two parallel planes, both parallel to the x,-axis. Note that the pressure 
force acting across those planes has no x,-component. Therefore, the rate of change 
of the 2,-component of momentum as so defined is equal to the 2,-component of the 
force with which the body acts on the fluid. 

This way of defining momentum by an integral which is absolutely convergent 
gives a result independent of which planes parallel to the 2,-axis are chosen provided 
that all of the vorticity in the flow field lies between them. Note, however, that a 
definition using planes not parallel to the 2,-axis would give a different value for the 
2,-component of momentum ; furthermore, that  value would have no practical 
relevance because its rate of change would no longer balance the 2,-component of 
force with which the body acts on the fluid; differing from it, indeed, by an amount 
equal to the (in general) non-zero pressure force acting across those planes. 

An alternative, more classical approach expounded rather comprehensively in 
Lamb’s Hydrodynamics, and also developed a little further in Lighthill (1986), avoids 
referring to ‘the momentum of the fluid’ and refers rather to the impulse needed to 
set up a given motion from rest. For a changing flow field the rate of change of this 
impulse can be proved equal to the force with which the body acts on the fluid. Besides 
sharing this property with ‘ the momentum ’ as defined above, the value of the impulse 
is in all cases identical with that of the momentum. 

The ‘momentum’ concept is the simpler one although this advantage is partly 
outweighed by the fact that a different definition is used for each component of 
momentum (clearly, for the x,-component, we have to consider fluid bounded 
externally by parallel planes both parallel to the %,-axis). The ‘impulse’ concept is, 
admittedly, simple for the potential-flow part of the fluid motion, which can always 
be set up by a distribution of impulses applied at its boundary, but involves more 
refined consideration for the vortex-flow part : the notional distribution of impulses 
needed to set this up includes impulses applied directly to particles of fluid throughout 
the rotational part of the flow. The total impulse, however, is (as stated earlier) 
identical with the total momentum. In  the rest of this paper I use the word 
‘momentum’ as a natural name for a quantity whose rate of change is equal to the 
applied force. 
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6. Momentum approaches to Morison’s equation 
For a general body shape without rotational symmetry its added mass for motion 

in different directions may take different values. However, there is necessarily a 
special set of coordinate axes (x,, x2, x 3 )  for which the added mass takes values Mal, 
Ma,, Ma3 and for which the potential-flow component (a)  of the motion produced 
when the body moves with velocity ( -  U,, - U,, - U,) has momentum 

These special axes are called the body’s three principal axes for fluid inertia. 
It follows that the potential-flow component of the fluid motion acts on the body 

equal and opposite to the force (given by the rate of change of the momentum (7))  
with which the body acts upon that potential flow. When the body is at rest in an 
external flow with velocity (U, ,  U,, U,)  the potential-flow force acting on the body 
is the sum of (8) with the ‘Froude-Krylov force’ 

p V ( %  Q2,7J3). (9) 

This sum can be written in terms of Morison coefficients 

Here, the simple expression (4) for potential-flow force that occurs in Morison’s 
equation is replaced by a more sophisticated and more accurate expression (familiar 
already to G. I. Taylor) that is not necessarily parallel to (U, ,  U2, 03), the ambient 
fluid’s acceleration vector - a vector which, of course, is in turn not necessarily parallel 
to that fluid’s velocity vector (U,, U,, U,). These are important refinements. On the 
other hand, the potential-flow force still has a linear dependence on the ambient 
velocity field, although this property (exact on the assumptions made above) will 
need to be reviewed critically for real structures in real waves. 

G. I. Taylor clarified the fact (Taylor 1 9 2 8 ~ )  that these potential-flow disturbances 
exhibit a dipole-like far-field behaviour. The disturbance potential is asymptotically 
equal to 

as (x: + xi + xi); becomes large. 
In addition to the contribution (7) of its potential-flow component (a), the total 

momentum of a fluid flow includes also the momentum of its vortex-flow component 
( b ) .  A famous formula, 

(13) 

for the momentum of a vortex flow is widely used for estimating the vortex-flow force 
on an offshore structure (as equal and opposite to the rate of change of this expression 
for the momentum). The expression (13) can be described in simple mechanical terms 
as one-half of the moment of a hypothetical force distribution with force per unit mass 
equal to the vorticity. 

Like the potential-flow disturbances, the vortex motion ( b )  exhibits a dipole-like 
far-field behaviour. The vector dipole strength for its far-field behaviour is given by 
expression (13) divided by the density p. 

+p {x x o d V ,  
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Textbooks usually derive (13) for a fluid motion without solid boundaries. Where 
there is an internal boundary, however, (13) does still exactly represent the 
momentum of the vortex flow ( b ) ,  satisfying zero boundary conditions, provided that 
w represents what is sometimes called the additional vorticity. This means the 
vorticity field minus a distribution of vorticity attached to  the boundary in the form 
of a vortex sheet allowing exactly the tangential velocity (slip) associated with the 
potential flow (a ) .  

For offshore structures, additional vorticity means, essentially, the shed vorticity. 
(It should on the other hand be noted that for flows around wings and winglike 
surfaces, where the local flow past an aerofoil section differs from simple potential 
flow by incorporating circulation around the aerofoil, additional vorticity includes 
bound vorticity as well as trailing vorticity.) I n  the language of $ 5 ,  the fact that 
with w as additional vorticity the expression (13) represents the ‘momentum ’ of the 
vortex flow ( b )  was demonstrated by Lighthill (1979) ; while Lighthill (1986) gives a 
thorough analysis of why the ‘impulse’ takes this form. 

It follows that the simple scalar expression ( 2 )  for vortex-flow force that occurs 
in Morison’s equation may (just as we found for the potential-flow term) be replaced 
by a more sophisticated and more accurate vector expression whose direction is not 
necessarily parallel to the ambient flow velocity. This expression is 

- d($p j x  x w d V )  
dt , 

being equal and opposite to  the force with which the body is acting on the fluid to 
change the momentum (13) in the vortex-flow component ( b )  of the motion. 

Equation (14) is valuable for structures in oscillating flows because i t  allows the 
vortex-flow force to  be related directly to observations of vortex shedding and to  
understanding of how the shed vorticity is convected back and forth by a combination 
of the oscillatory potential flow ( a )  and of the vortex flow ( b )  itself. The entire 
hydrodynamic loading for externally unbounded flows may then be divided into 

( a )  the part ( 1 1 )  that depends linearly on the ambient velocity field and can be 
accurately calculated ; and 

( b )  the part (14) that  varies nonlinearly and can only be roughly estimatedt but 
is related in a definite way to vortex shedding and to the convection of shed vorticity. 

The rest of this paper is devoted to assessing the appropriateness of such a division 
for real structures in real waves and the extent to which the potential-flow force 
remains both linearly dependent and accurately calculable. 

7. Potential-flow calculations with linearized free-surface condition 
Among mathematical models that  allow for the presence of the ocean’s free surface, 

there is of course a very famous one under which the potential-flow force does remain 
linearly dependent and, with the aid of some excellent computer programs developed 
during the last ten years, accurately calculable. This is the model utilizing a linearized 
free-surface condition. 

The propagation of ocean waves over relatively deep water has usually been seen 
as a particularly fruitful area of application of potential-flow theory. Indeed, in the 

f We may, however, note that, although this paper’s objectives do not include any survey of 
current numerical procedures for estimating vortex-flow forces, there have been impressive recent 
advances in the quantitative value of such procedures. 
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absence of any solid body, no source of vorticity is present so the flow can be expected 
to be irrotational. 

The velocity potential $ then satisfies the linear Laplace equation together with 
a free-surface condition that can be approximately linearized, for waves of small 
steepness, in the form 

a$ 3 
a t 2  aZ =-g- o n z = O .  (15) 

Here, z is a coordinate measured vertically upwards from the plane z = 0 representing 
the undisturbed position of the free surface. 

Since on this model all the governing equations are linear, a general deformation 
of the sea surface can be Fourier-analysed into sinusoidal components with different 
wavenumbers k and different directions of propagation. For a sinusoidal wave 
propagating in the x-direction with amplitude a over deep water we have 

co = a sin (wt-kx) and $o = [k-l  exp ( k z ) ]  aw cos (wt-kx), (16) 

where co is the displacement of the free surface and $o the velocity potential, and 
where the frequency w ,  by (15), satisfies 

w2 = gk. (17)  

The subscript o (for oncoming) is here used on g and on $ because the model 
proceeds to calculate the potential-flow force on an offshore structure generated by 
an oncoming wave specified as just the component (16) in the ambient sea-surface 
spectrum. A complete picture of the variation of potential-flow force on the structure 
can then be obtained from its combined response to all spectral components. We 
outline the classical wave-scattering theory for determining the potential-flow force 
on a structure in the oncoming wave (16) before discussing in $8 the legitimacy of 
its continued treatment separately from that of the vortex-flow force. 

The linearized theory of the scattering of the oncoming wave (16) by a stationary 
structure expresses the linearized velocity potential (with 1 for linearized) 

$1 = $,+A (18) 

as a sum of oncoming and scattered waves. Here, $s like $o satisfies the linearized 
free-surface condition (15). Far from the structure, $s satisfies ‘the radiation 
condition’ stating that it represents only outgoing waves. At the surface of the 
structure, $s satisfies the condition 

stating that the combined velocity potential (18) has its local value of normal velocity 
a$/an equal to zero. To the same linearized approximation, the potential-flow force 
on the structure is the resultant action 

on S- (part of the structure’s surface below the undisturbed water level z = 0) of the 
transient pressure -pa$,/at (linearized form of the pressure excess over its 
hydrostatic distribution). 

Good computer programs exist (see, for example, Hogben et al. 1977; Standing 
1981) for determining $s, or a t  least for determining its distribution over 8- 
which is required in the calculation of the potential-flow force (20). Extensive 
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information is available, therefore, on how this force varies as a function of 
wavenumber for different shapes of structure. 

A feature common to all of the data so obtained is their limiting behaviour for low 
wavenumber. Essentially, the potential-flow force in this limiting case is given to close 
approximation by the methods of $6 above. Specifically, any piece of the structure 
with cross-sectional dimensions small compared to k-l (that is, to h/2n,  where A is 
the wavelength) responds as in (1  1) to  the fluctuating ambient velocity (U,, U,, U,) 
in its immediate neighbourhood. This velocity may be taken as the value of grad q50 
a t  (say) the centroid of the piece of structure because its size is given as small 
compared with the scale k-l of variation of expression (16) for q50. 

Thus the computer programs in question have twofold importance. First of all, they 
confirm the validity of the methods of $6 for application to the vast majority of 
structural elements ; namely, those with cross-sectional dimensions significantly 
smaller than a typical ocean wavelength divided by 2n. Secondly, they allow accurate 
results to be obtained for that relatively small number of elements within offshore 
structures (large storage tanks, for example) that  do not satisfy this condition. 

8. Effects of free surface on vortex-flow forces 
The practical value of all the above conclusions might, on the other hand, be 

questioned on the basis of doubts regarding the validity, when a free surface is 
present, of the division of hydrodynamic loadings into ( a )  potential-flow forces and 
( b )  vortex-flow forces. These areas of possible uncertainty may, however, be explored 
fruitfully from the viewpoint of the analysis given in $6. 

This analysis indicates, indeed, that important common features are shared by 
potential-flow force and vortex-flow force. I n  particular, both are intimately linked 
to the vector dipole strength for an associated far-field behaviour. Indeed, if this 
dipole strength is written as G ,  then the associated force, given in the two cases by 
expressions (11) and (14), can in either case be written as 

The relevance of this fact is most evident in the limit of low wavenumber ($7 ) .  Then 
the verification that the local dipole-like disturbance to the potential flow, produced 
by a piece of the structure small compared with k- l ,  generates to close approximation 
the same force as in externally unbounded fluid, can be used to draw a similar 
inference for the local dipole-like vortex-flow disturbance. This inference is that 
vorticity extending over a region small compared with k-l will generate a force given 
by the same expression (14) as in externally unbounded fluid. 

Consider, for example, a plane vortex ring, with circulation K around the core of 
that line vortex whose looped shape constitutes the ring. In this case, the associated 
flow field could be described by a velocity potential q5 only if we allowed the value 
of q5 a t  a point to increase by K as that point encircled the line vortex. Therefore, 
the motion could be described by a single-valued potential q5 only if a discontinuity 
were allowed; for example, a discontinuous jump by K at the plane surface having 
the ring as i6s boundary. This means that the vortex ring is exactly equivalent to 
a distribution over this plane surface of dipoles whose vector strength per unit area 
has magnitude K and direction normal to this plane surface. The far-field behaviour 
is therefore that of a dipole of strength 
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(of magnitude K times the area enclosed by the vortex ring and the same direction) 
exactly as stated in $6. 

This classically familiar argument has been summarized here (see, for example, 
Lighthill (1986) for a fuller treatment) simply in order to remind the reader that it 
remains exactly valid whether or not the fluid has a free surface. I n  the presence of 
a free surface where the boundary condition (15) is satisfied, the dipole has of course 
a mathematically more complicated velocity field. Nevertheless, in those low- 
wavenumber conditions when the potential-flow force has the same relation to dipole 
strength as for unbounded fluid, we can expect the same to be the case for the 
vortex-flow force. 

This conclusion for a vortex ring can then be extended to a more complicated 
vorticity distribution by regarding i t  as composed of an ensemble of such rings. It 
suggests that  treatment of the vortex-flow force ( b )  in the manner outlined in $6 may 
be appropriate in low-wavenumber cases. I n  other cases, admittedly, no such 
conclusion can be drawn, but these are cases when vortex-flow forces are expected 
according to  the estimate given by Morison’s equation (6) to be small compared with 
potential-flow forces. We infer that  the careful calculation of potential-flow forces is 
important under all circumstances. 

9. Nonlinear theories of potential-flow force 
Lighthill (1979) suggested a number of reasons for dissatisfaction, even in 

low-wavenumber cases, with expressions for potential-flow force having a linear 
dependence on the ambient velocity field. His work together with similar work by 
others a t  that  time (see Mei (1983) for a detailed survey of the literature) demon- 
strated that,  in all cases, reliable calculations of potential-flow force to second order 
could be made, and that the calculated contributions having quadratic dependence 
on wave amplitudes could be of substantial magnitude. Because the approximate 
estimation of vortex-flow forces through the use of expressions like (14) requires 
particularly refined investigation, i t  is all the more important that any resulting 
estimates of vortex-flow forces should be able to  be compared with experimental 
measurements from which potential-flow forces, calculated as accurately as possible 
(namely, to second order), have been subtracted. 

Lighthill (1979) contrasted the above approach with an alternative, long estab- 
lished procedure for taking effects of large wave steepnesses into account. The latter 
procedure is based on the consideration of an oncoming wave in the form of an exactly 
calculated periodic wave of large steepness, whose flow field is then used as the 
ambient velocity (U,, U,, U,)  when flow-force formulae such as those of $6 are applied. 
I n  particular, the potential-flow force is estimated from the linear formula (1  1 )  
applied to the velocities in the well-known ‘Stokes wave ’ (periodic wave satisfying 
a full nonlinear free-surface condition). 

Such a procedure is logically unsatisfactory in many different ways. First, because 
Fourier analysis is no longer available when a nonlinear free-surface condition is used, 
there is no compelling argument for considering in isolation the case of a periodic 
wave. Secondly, the procedure takes nonlinear effects into account only as they 
influence the oncoming wave while neglecting nonlinear effects on the interaction 
between that wave and the structure. Yet, as demonstrated by Lighthill (1979) and 
others, this interaction is influenced by nonlinear effects to a greater extent than is 
the undisturbed wave. I n  fact, substantial contributions of second order in the wave 
amplitude to the potential-flow force resulting from this interaction can in practice 
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be calculated (as already mentioned); while, for the free wave, nonlinear effects arise 
only a t  third order. 

From an even more fundamental standpoint, the exclusive use of expression (1 1 )  
to derive the potential-flow force with which a ‘Stokes wave’ acts upon a structural 
component is unsatisfactory because it represents the ambient flow around that 
component in terms only of the local velocity ( U l ,  U,, U3)  of that flow. It was 
G. I .  Taylor himself, however (Taylor 19286), who emphasized that the ambient 
rate-of-strain (part ( a )  of the analysis of the local motion given in $2 above) generates 
in potential flow a significant interaction when a solid body is present to oppose that 
straining motion. Now, Lighthill (1979) pointed out that the sinusoidal-wave 
potential q50 of (1 6) generates large extensional rate-of-strain components 

a v o  - W O  - 
ax, a x 2  

- - [k exp (kx) ]  aw cos (wt - kx) ~ 

__ - -- 

and confirmed that the presence of a body in this fluctuating rate-of-strain field 
produces an important potential-flow response. 

He showed furthermore that the second-order force on the body arises from cross 
terms between its responses to fluctuating velocity and to fluctuating rate-of-strain 
rather than from squared terms in either response separately. This agrees with the 
conclusion of Taylor (1928b), who in the notation of $6 above identified these 
cross-terms for a body in externally unbounded fluid as a force of which the 
xf-component is 

Lighthill’s corresponding result for flows with a free surface includes three terms, one 
of which reduces to expression (24) in the low-wavenumber limit. 

10. Loading associated with the nonlinear free-surface condition 
Another of Lighthill’s three terms represents the effect of refining the free-surface 

condition (15) so that it becomes accurate to the second order in small quantities. 
To this higher approximation it takes the form 

Amusingly, the right-hand side is double the value derived by simply taking into 
account the dynamic pressure term 

- MVq5)z> (26) 

when equating water pressure to atmospheric pressure a t  the free surface; this is 
because an exactly equal contribution appears (Lighthill 1979, figure 24) when the 
rate of change of the sum of transient and hydrostatic pressure on the free surface 
is expressed to second order. 

The simple periodic oncoming wave on deep water, given by (le), satisfies the 
linearized free-surface condition (15) not just on z = 0 but for all values of z. 
Furthermore, (Vq50)z takes the value u2w2 exp (2kz), independent oft, so that the sec- 
ond-order condition ( 2 5 )  is also satisfied for all z and, in particular, on z = 6. In  short, 
the free sinusoidal wave (as mentioned in $9) is unaltered by second-order effects. 

is altered in two Its interaction with the structure, however, written in (18) as 
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ways by second-order effects. If we expand the velocity potential of the irrotational 
part of the flow as 

where q51 satisfies the linearized free-surface condition (15) and q5q is the quadratic 
(that is, second-order) correction to q51, then the free-surface condition on q5q becomes 

q5 = q 5 1 + q & + . . . ,  (27) 

Here, the second term on the right-hand side, absent for the particular case considered 
by Lighthill (1979) (namely a vertical cylinder, for which as for the free sinusoidal 
wave the linearized condition (15) is satisfied for all z ) ,  takes in general the form 

This effect, due to the vertical gradient of the left-hand side of (25), supplements in 
(28) the effect of the first term due to variability of free-surface speed in the 
wave-structure interaction potential q51. 

The condition (28) essentially equates q5q to the solution of a linear problem of wave 
radiation resulting from the action of a fluctuating pressure Q applied at the free 
surface in the presence of the stationary structure. Here, Q fluctuates a t  double the 
frequency of the oncoming wave. In  problems (including the case of the vertical 
cylinder) where L = 0, the applied surface pressure Q takes the value ~ ( V q 5 , ) ~ ;  in more 
general cases, 

Lighthill shows how easy it is to determine any particular component of the 
additional loading on the structure which results from the quadratic potential q5q. 
This determination can be regarded as a straightforward application of the general 
reciprocity principle for mechanical systems. This principle refers to two alternative 
sets of displacements, generated by two alternative sets of forces, and states that the 
work done by the forces of either set acting over the displacements of the other is 
the same. 

We apply this principle taking as the first set of forces those that are needed to 
generate the potential q5q. These include the applied surface pressures Q and also 
forces needed to keep the structure stationary (these are forces equal and opposite 
to the hydrodynamic loadings on the structure). 

Suppose now that we need to know the resultant Fq of the hydrodynamic loadings 
in any particular direction. Then we take the second set of forces to be those which 
would be required to give the structure unit translational motion in that direction; 
specifically, a motion fluctuating at the same frequency (twice the natural frequency 
of the oncoming wave) with unit velocity amplitude. This motion radiates waves on 
the free surface (which we suppose to be completely free in this second case) and the 
distribution W of vertical velocity over the free surface can in principle be computed 
for this second linear problem. 

The rate of working by the forces of the first set acting over the displacements of 
the second set is 

(31) 
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This results from the force ( -  Fq) acting in the direction of the translational motion 
with unit velocity, and from the force Q d S  exerted by the applied pressures in the 
negative z-direction, opposite to that of the vertical velocity W. By contrast, the rate 
of working by the forces of the second set (applied entirely a t  the structure) on the 
displacements of the first set (with the structure at rest) is zero. The reciprocity 
principle equates (31) to zero, then, giving 

Equation (32) exemplifies ways of calculating second-order forces from quantities 
computed by solving linear problems. The same method is easily adapted to give, 
for example, the moment of the loading about a particular axis (the second set of 
forces is then taken to be those needed to give the structure unit rotational motion 
about that axis). 

Eatock Taylor & Hung (1986) give a most valuable review of procedures for 
obtaining Fq. Their paper derives results for any wavenumber k ,  with and without 
the above restriction to the deep-water case. 

11. Additional second-order loadings 
(but 

calculable as we have seen from the solutions to linear problems), there are two parts 
of the second-order hydrodynamic loading which result directly from the linear 
potential $]. One of these arises from the fact that the loading calculated on linear 
theory is given by an integral (20) over just that part of the structure’s surface, S-, 
that lies below the undisturbed water level z = 0. If however that surface intersects 
the plane z = 0 in a waterline w, then a certain additional ‘waterline force’, 

Besides the loading Fq that is associated with the quadratic potential 

acts a t  the waterline; resulting from linear-theory pressures either, where c, > 0, 
acting on a part of the structure above z = 0 or, where < 0, failing to act on a part 
of the structure below z = 0 (see Lighthill 1979, figure 27). Here, ds is an element 
of length of the plane curve w constituting the waterline and n is the outward normal 
to that curve. 

generates directly one further second-order 
force, associated with the dynamic pressures - ip(V$l)z, which necessarily accompany 
the linear-theory pressures (transient plus hydrostatic) just referred to. Their 
resultant may be named the ‘dynamic force’, 

Finally, the linear-theory potential 

r 

The total second-order force is the sum of three parts given by expressions (32), 
(33) and (34). All are directly calculable in terms of computed solutions to linear 
wave-radiation problems. Lighthill (1979) draws attention to the value of this 
additional benefit derivable from such computed solutions. They allow the calculation 
of the potential-flow force not just to a linearized approximation but also to second 
order. This permits the determination of vortex-flow force (by subtraction of the 
calculated potential-flow force from measured data) to greatly improved accuracy ; 
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which in turn facilitates its convincing interpretation in terms of the convection of 
shed vorticity, in accordance with (14). 

I n  low-wavenumber cases, the dynamic force (34) on each component of the 
structure coincides with the value (24) obtained for externally unbounded fluid by 
the method of G. I .  Taylor. This value, as noted earlier, takes the form of cross-terms 
between the component’s response to  ambient velocity and its response to ambient 
rate-of-strain. Such a form is, furthermore, taken (Lighthill 1979) by all three parts 
of the second-order force in the low-wavenumber limit; a limiting process in which 
the waterline force and the dynamic force are comparable in magnitude. 

For small enough wavenumber I%, on the other hand, the quadratic force becomes 
negligible by comparison with the dynamic and waterline forces (Lighthill 1979).t 
Therefore, the sum of the waterline force (33) and a dynamic force taking Taylor’s 
form (24) gives to good approximation the appropriate second-order correction, for 
structural components with cross-section small compared with k- l ,  to the simple 
potential-flow forces represented in this limit by the expression (1  1 )  using Morison 
coefficients. Lighthill (1979) made clear the quantitative significance of this conclu- 
sion for the response of a structure to  a periodic wave. 

12. Application to structures with very low natural frequencies 
I n  this paper I have outlined those directions of research that first suggested how 

second-order potential-flow forces may need to  be taken seriously in the interactions 
between waves and structures. I n  later developments a most important application 
of this theoretical approach has proved to be to the new types of oil platform, designed 
for operation in deeper areas of the continental shelf, such as the tension-leg platform 
introduced by Conoco in Britain’s Hutton Field. These are relatively compliant 
structures, with very low natural frequencies. It might indeed be claimed for them 
that their natural frequencies are so low (corresponding to periods of the order of a 
minute) that  no ocean waves are directly able to excite them. The practical 
significance of such a claim is evident. 

On the other hand, the second-order potential-flow forces that are generated by 
an ocean-wave spectrum include difference-tone components, related to  that part of 
the product of two nearby components in the ocean-wave spectrum whose frequency, 
given by the difference of their two frequencies, resonates with the very low natural 
frequency of the compliant structure. Second-order forces a t  such difference fre- 
quencies are found to be magnified in importance, simply because they are able to 
generate a resonant response in the structure. 

Several investigators have studied this phenomenon (e.g. Newman 1975 ; Pinkster 
1979; Standing, Dacunha & Matten 1981). In  a major programme of current research 
further light is being shed on the second-order forces, their sensitivity to hydro- 
dynamic interactions in complex compliant structures, and their implications for 
low-frequency responses (Drake, Eatock Taylor & Matsui 1984; Eatock Taylor & 
Hung 1985; Eatock Taylor & Sincock 1986; Matsui 1986). The broad principles 
outlined in this paper are being found to  have particular value in this context. 

I am most grateful to my colleague Professor Eatock Taylor for invaluable help 
in the preparation of this paper. 

t More recently, however, Eatock Taylor & Hung (1986), while confirming Lighthill’s results for 
low wavenumber k, showed how the quadratic force (32) grows rapidly as k increases. 
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